Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules
نویسندگان
چکیده
In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods. Keywords—Data mining, association rule, fuzzy frequent pattern growth.
منابع مشابه
Mining Association Rules From Time Series Data Using Hybrid Approaches
Due to the frequent appearance of time series data in various fields, it has always been an essential and interesting research field. A time series analysis involves the methods for analyzing time series data, in order to mine meaningful and other relevant characteristics of the data. In most cases, time series data are quantitative values, so to come up with an intellectually appealing data mi...
متن کاملGenetic learning of the membership functions for mining fuzzy association rules from low quality data
Many methods have been proposed to mine fuzzy association rules from databases with crisp values in order to help decision-makers make good decisions and tackle new types of problems. However, most real-world problems present a certain degree of imprecision. Various studies have been proposed to mine fuzzy association rules from imprecise data but they assume that the membership functions are k...
متن کاملWithout Expert Fuzzy based Data Mining based on Fuzzy Similarity to Mine New Association Rules
The problem of mining association rules in a database are introduced. Most of association rule mining approaches aim to mine association rules considering exact matches between items in transactions. A new algorithm called ―Without expert fuzzy based data mining Based on Fuzzy Similarity to mine new Association Rules ‖ which considers not only exact matches between items, but also the fuzzy sim...
متن کاملWhy Fuzzy Sequential Patterns can Help Data Summarization: An Application to the INPI Trade Mark Database [FUZZ4383]
Mining fuzzy rules is one of the best ways to summarize large databases while keeping information as clear and understandable as possible for the end-user. Several approaches have been proposed to mine such fuzzy rules, in particular to mine fuzzy association rules. However, we argue that it is important to mine rules that convey information about the order. For instance, it is very interesting...
متن کاملLinguistic data mining with fuzzy FP-trees
Due to the increasing occurrence of very large databases, mining useful information and knowledge from transactions is evolving into an important research area. In the past, many algorithms were proposed for mining association rules, most of which were based on items with binary values. Transactions with quantitative values are, however, commonly seen in real-world applications. In this paper, ...
متن کامل